L'appli sur Google Play

EXOMATH, Suite g��om��trique

Acceder directement à la leçon

Les suites géométriques

Le principe d'une suite géométrique est de passer d'un terme au suivant en multipliant toujours par le même nombre non nul q que l'on appelle raison.

On obtient facilement qu'une suite géométrique de premier terme $u_0$ et de raison q s'écrit sous la forme

$$u_{n+1}=qu_n$$ que l'on peut directement obtenir avec $u_n=q^nu_0$.

On peut donner la somme des n+1 premiers nombres d'une suite géométrique, on la note $S_n$. On peut montrer en faisant la différence de $S_n$ avec $qS_n$ que :

$$\text "si q≠1",S_n={1-q^{n+1}}/{1-q}u_0.$$

Si on remplace $u_0$ par 1 on obtient la somme des puissances successives d'un nombre: $1+q+q^2+....+q^n$.

Exemple: Soit une suite géométrique de raison 2 et de premier terme 1. Alors $u_{n+1}=2u_n$ et $u_n=1×2^n=2^n$.

Par exemple, $q_{10}=2^{10}$.

Démontrons que la somme des n+1 premiers termes est $S_n={1-2^{n+1}}/{1-2}×1= -(1-2^{n+1})$$.

$\table S_n=,1,2,...,q2^{n-1},2^n;2S_n=,,2,2^2,...,2^n,2^{n+1};S_n-2S_n=1-2^{n+1}$.

On a $-S_n=1-2^{n+1}$, on arrive donc à la réponse attendue.